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I. Introduction

A general formulation of the central limit problem for sums of

independent random variables is the following (see Loeve r1, p. 291).

Let

Sn = •Xnk

where k4l,...,kn, k - as n * and for each n X are independentn

random variables with probability distribution functions F and
nk

Xnk 0. Let I be the distribution functions of Jand let (x)

be the distribution function of a Normal random variable with zero-meLn
2

and variance 2 . Uneer these conditions it is possible to show the

following.

Theorem 1.1: Let max kVar X -n 0 and E kVar Xnk-v 2 < - where

t is a positive constaltt. The sums S are asymptotically Normal

(i.e., F n(x) "(x)) if and only if for every c > 0

(11gn - x 2dF nk 'Ok Ix 1!,

Except in special cases, the application of condition 1.1 is difficult

because of the integrals involved. By assuming the existence of
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fourth-order moments, we are able to prove new necessary and sufficient

conditions for bo.th Normal and Poisson convergence which involve only

moments. The proof of the theorem makes use of a characterization of

the Normal distribution among infinitely divisible tI,.D.) laws which

was perhaps first recognized by Borges f3j and later independenrly by

the author [41.

2. Normal Convergence

Theorem 2.1: Let EISn1(4+ý ) be uniformly bounded for some 5 > 0.
n

Let maxkVar Xk - 0, ar Xnk - 2 < - where 2 is a positive

constant. Then Sn is asymptotically Normal if and only if

(2.1) ES 4_3E 2 2 - 0

Proof: The asymptotic normality of S implies condition 2.1 by the
n

moment convergence theorem (see Loeve rl1, p. 184) and the fact that

for a zero-mean Normal random variable S, ES 4 - 3)ES212 2 O.

To prove tihe converse it is sufficient to show that every

convergent subsequence ) FA of ) IJ converges to f(x) (see

Feller '2j, p. 261).

Let F be the limit of Fn,, then F is an infinitely divisible

law with characteristic function f(u) such that (see Loive .17,

p. 293),

(2.2) log f(u) - j(e i-l-iux) 1 2 dY,(x)
x

where K(x) is monotone increasing and of bounded variation,

K(-a) 0 0, and K(-) a 2 < The integrand is defined by continuity
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at the origin. It is known that F(x) is a Normal law if and only

if K(x) increases only at x = 0.

Since EIS n(4+6) are uniformly bounded, all moments of 5 n' of
n of

4 2 2

order 4 or less converg to those of F. Since E•n -)1 - 0

0= jx dF(x) -3 Jx dF(x)2

=fi -•log f(u)
ýu 4 u=0

(2.3) - fx2 d(x).

This last equation is obtained by differentiating the RHS of Eq. (2.2)

under the integral sign. This is justifie-d in the following way. That

d2 
u

(2.4) - -A log f(u) =e dK(x)
du2

is sown by Loeve nl, p. 293. Thus the L.H.S. of Eq. (2.4) is a

characteristic function. Since this characteristic function is twice

differentiable, its second derivative is given by (Lorve r1i, p. 200)

d4-- log f(u) = J'x 2elUd(x

du

and Eq. (2.3) follows. Thus K(x) increases only at x - 0.

Finally, since kVar Xnk- 7 we have shown that Fn, -n' (x) and

the proof is complete.
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Condition 2.1 becomes even simpler when we note that

ES~ ~3{ES24 -3 JX {uk}]

The L.H.S. is usually called the fourth cumulant of S . This identity

says that the fourth cumulant of a sum of independent random variables

equals the sum of the fourth cumulants.

If the distributions F are known to be infinitely divisible (I.D.),
n

then moments higher than 4 are not required.

Theorem 2.2: If Fn are I.D., then Fn (x) - $(x) if and only if
22

ES2 -o a and
n

ES -3 ES2 0.

Proof: The characteristic functions fn (u) are given by

log fn(U) = (e iUX-l-iux) 1 dKn(W.

x

For any e > 0

SdKn (x) • • dKn(x) - 0

Ix 1>,t•

a n .Thus K n (x) converges to a step function at the origin of

2
size ay

The converse is obtained from the moment convergence theorem.
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3. Poisson Convergence

The key feature of the results above is that tl'e fourth cumulant

(i.e., ES -_E 212 ) ,corresponds to 2' di(x) and is a good test for a

£ jump of K(x) at the origin. However, this method can be used to testi'
"for jumps at other points also. For example, the equation

'}'

"I (x-1) 2dK(x) - 0

implies that K(x) can only have a jump at x = 1. This leads to the

following results. First we note that

J(x-l) 2d1n (x) ES4 -3{ES n 2  -2ESn3 + ES 2

Sn n n nk

Theorem 3.1: Let EISnI'' +6) be uniformly bounded for some 8 > 0.

The.. S is asymptotically Poisson (i.e., log fn(u) - (eU-1)-_uw2j)

if and only if

ES 4 -3{ES22 -2ES 3 + ES - 0.
n ) n n

In a similar way we obtain:

Theorem 3.2: If Fn are I.D.. then Fn is asymptotically Poisson if
"a E2 2

"and only if ES 2 2 and
n

ES 4 _3{ES2 -2ES3 + ES -0.
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